- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Matsuda, Hiroyuki (2)
-
Beard, T Douglas (1)
-
Casey, Kimberly A (1)
-
Ferrier, Simon (1)
-
Harfoot, Mike (1)
-
Jackson, Stephen T (1)
-
Kurihara, Kiyofumi (1)
-
Leidner, Allison K (1)
-
Lenton, Timothy M (1)
-
Luikart, Gordon (1)
-
McCabe, Clare (1)
-
Myers, Bonnie J (1)
-
Nelson, Alyssa K. (1)
-
Pettorelli, Nathalie (1)
-
Rosa, Isabel M (1)
-
Ruane, Alex C (1)
-
Senay, Gabriel B (1)
-
Serbin, Shawn P (1)
-
Shiklomanov, Alexey N (1)
-
Suga, Toru (1)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Myers, Bonnie J; Weiskopf, Sarah R; Shiklomanov, Alexey N; Ferrier, Simon; Weng, Ensheng; Casey, Kimberly A; Harfoot, Mike; Jackson, Stephen T; Leidner, Allison K; Lenton, Timothy M; et al (, BioScience)null (Ed.)Abstract Biodiversity projections with uncertainty estimates under different climate, land-use, and policy scenarios are essential to setting and achieving international targets to mitigate biodiversity loss. Evaluating and improving biodiversity predictions to better inform policy decisions remains a central conservation goal and challenge. A comprehensive strategy to evaluate and reduce uncertainty of model outputs against observed measurements and multiple models would help to produce more robust biodiversity predictions. We propose an approach that integrates biodiversity models and emerging remote sensing and in-situ data streams to evaluate and reduce uncertainty with the goal of improving policy-relevant biodiversity predictions. In this article, we describe a multivariate approach to directly and indirectly evaluate and constrain model uncertainty, demonstrate a proof of concept of this approach, embed the concept within the broader context of model evaluation and scenario analysis for conservation policy, and highlight lessons from other modeling communities.more » « less
An official website of the United States government
